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Sigmatropic rearrangements provide a powerful tool for
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N-Alkyl and N-sulfonyl vinylaziridines have received con-
siderable interest as intermediates in the stereoselective synthesis

stereocontrolled bond construction. Of these reactions, those®f @lkaloids and peptidomimetics, and, as a consequence, several

variants in which a carbenheteroatom bond, which is normally
easily formed, is transformed into a carberarbon bond have
proven particularly useful, prominent examples being the [2,3]-
Wittig and [3,3]-Claisen rearrangemenits. The often excellent

stereoselectivities obtained in these reactions are usually

rationalized by assuming cyclic transition states in which the
stereochemical information embedded in the substrate is e

fectively communicated, for steric or stereoelectronic reasons,

to the product. The main thrust in this area has traditionally

efficient routes toward them have been developéd. Some-
what surprisingly, the correspondiiyyacyl andN-H vinylaziri-
dines, which might serve as a precursor for all types of
vinylaziridines, have received less attention, and, prior to this
investigation, no general and enantioselective synthesis of them
has been documented. THhe-acyl vinylaziridines 4a—g

s_required for the present study were prepared from the corre-

sponding vinylepoxidesla—d®® (ee >95%) as outlined in
Scheme 1. Acid-catalyzed aminolysis af resulted in a

been directed toward substrates in which the migrating bond is Stereospecific and highly regioselective ring-opening to give

a C—0 o-bond, while other heterologs have received consider-

ably less attention. In this respect weand otherd, have
recently documented the use of varioublysubstituted vinyl-

aziridines as substrates in the aza-[2,3]-Wittig rearrangemen

to yield the corresponding di- or trisubstituted tetrahydropy-
ridines in high yield (a, eq 1), the driving force being the relief
of ring strain® It was also demonstrated that the stereochemica
outcome of the reaction is dependent on the substitution patter

amino alcohols2 (69—93%)14 The subsequent ring closure
was best effected using the standard Mitsunobu profScol,
affording aziridines3 (49—54%) and treatment of these materials

twith acetic anhydride, propionic anhydride, benzyloxyacetic

anhydride, orN-Boc glycine anhydrid® gave the N-acyl
vinylaziridines 4a—g, the precursors for the projected rear-

| rangement. The crude products from the acylation step were
njudged to be>95% pure according téH NMR spectroscopy.

of the aziridine nuclei. In an effort to expand the synthetic HOWeVer, attempts to purifyib on silica gel resulted in a

potential of vinylaziridines we became interested in the pos-
sibility of using them in an aza-[3,3]-Claisen rearrangenift,

guantitative rearrangement into the correspondmeags4,5-
disubstituted oxazolin,1” and, consequently, the crude prod-

thus providing a novel entry to seven-membered lactams (b, eOIucts from the acylation step were used directly in the subsequent

1),8 compounds that are of interest in natural product synthesis
and as peptide turn mimetié$. Herein we disclose our
preliminary findings in this area.
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Claisen rearrangements, the yields of which thus refer to such
two-step sequences.

The results of the aza-[3,3]-Claisen rearrangements are
collected in Scheme 2. Whexacetyl vinylaziridineda was
added to LIHMDS in THF at—78 °C followed by slowly
warming the resultant mixture to room temperature, lackam
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was formed in 83% yield. Repeating the procedure with Scheme %
gavebb in equally good yield (83%). Having thus established
the feasibility of the rearrangement our next concern was the
stereochemical outcome when using more highly substituted
substrates. Deprotonation 4, thea-benzyloxy derivativeld

and the glycine amidée, which are known to give preferentially
the correspondingZj-enolates® and rearrangement gave the

seven-membered lactargs (85%, o;f 22:1), 6d (81%), and 1a, R=0Bn, R'=H 2
6e (76%), respectively. For the last two cases only single b R=CHPN, R'H
diastereomers of the products could be detected. Similadly, ( : Ejﬁa;u:;‘f’:;,iiﬁf 2
and E)-alkenyl derivatives4f and4g were rearranged int6f o
(73%) and6g (73%), respectively, as the only detectable R’ |
diastereomers in each cadéndicating that the stereochemistry c | R2 H:o
of the olefinic moiety is retained throughout the reaction. The — N_( N/>—
relative stereochemistry @c—g was secured by NOE analysis o )
in each case, showing an interaction between the C3 and C7 R Ph
methine protons, while that o8f and 6g also required an 43, R=0Bn, R'=R?=H s
inspection of the relevant coupling constants in tREINNMR b, R=CH,Ph, R'=R2=H
spectra® G, R=CH;Ph A'=H, RE-CH,

The results from the rearrangements of vinylazirididesin :: 2:5:;;‘1 :Z:j 22:35;%
be rationalized by assuming that the reaction proceeds through f, R=0Bn, R'=(2)-CH,, R2=H (E.Z1:13)
the six-membered boat-like transition-state asseril{lgq 2). g, R=H, R'=(E)-CH,08Bn, R%H

It should be noted that boat transition states have been invoked 2 congitions: (a) NH, TSOHH.0, 130°C, 4 days, 69-93%. (b)
previously to explain the outcome in Claisen-type rearrange- DEAD, PhP, THF, A, 49-54%. (c) (RCH,COYO, EtN, DMAP,
ments of certain cyclic substrates, while the acyclic cases areCH,Cl..

generally believed to involve chair-like structufé€s. The main

features of7 are that the olefin and enolate moieties ei®in Scheme 2
order to facilitate bond formation and that both these groups R
adopt arendoconformation, projecting over the three-membered
ring. Bond formation between the enolate and the alkene and _(RQ LIHMDS, THF
concomitant opening of the aziridine gives the observed N % "
products. This model then correctly accounts for (i) the 78 Cort
formation of a-isomers6c—e when deprotonating and rear-
ranging4c—e, the sound assumption being th&}j-enolates are 1“
involved in each cast¥;?and (ii) the stereochemical outcome R
when using the alkenyl derivatived4f and 4g. It is also J \wR?
presumed that the ease with which these transformations occur )
is a consequence of the considerable relief of ring strain when |~“ N o
going from a three- to a seven-membered ring. R
6a, R=0Bn, R'=R2=H (83% from 3a)
& H R e :, E:g:{:, RR“:HR?;:1 (c8:/(s:;°;n fS:r)n 3b)
o B , R= , R'=H, R*= % fr
LIHMDS H /N @..Rz d, H=CHZPh, R'=H, R2=083n (81% from 3b)
47 "R S R2 e, R=CH,Ph, R'=H, R%=NHBoc (76% from 3b)
N N"o (2) f, R=0Bn, R'=B-CHj, R?=H (73% from 3c)
OLi A H g, R=H, R'=0-CH,0Bn, R%=H (73% from 3d)
7 6

In conclusion, we have described a novel and highly
stereoselective aza-[3,3]-Claisen rearrangemeritl-atyl vi-
Some additional support for the above model was obtained nylaziridines into the corresponding tetrahydroazepin-2-ones.
when trying to rearrange vinylaziriding, prepared from the  Work is in progress to investigate the scope of this reaction
correspondingis-vinylepoxide by the route shown in Scheme and to apply it in natural product synthesis and for the
1. Deprotonation of8 (LIHMDS, —78 °C) followed by preparation of peptidomimetics.
warming to room temperature and quenching witfODOgave
only recovered starting material (10%), with complete incor- _ Acknowledgment. This work was supported financially by the
poration of deuterium at the-position, along with decomposed ~ Swedish Natural Science Research CouMit are grateful to Ms. N.
material, indicating that for steric reasons the enolate derived g‘”a”'t for t?e |?]|t|al pfrepara_tlon |°f alz'”.dé”ef_a”d to Dr. A-L.
from 8 is not capable of attaining the required transition state ustavsson for the conformational analysisoat-g.

structure to participate in the [3,3]-rearrangement. Supporting Information Available: A procedure for the rear-
rangement of vinylaziridindb and spectroscopic data for compounds
YO 4a—gand6a—g (5 pages). See any current masthead page for ordering
and Internet access instructions.
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